$$i_{2}(t) = -\frac{kE}{\omega_{2}L_{2}}e^{-\frac{\omega_{2}(t-t_{2})}{\sqrt{4Q_{2}^{2}-1}}}\sin[\omega_{2}(t-t_{2})].$$
(2)

где i₁(t), i₂(t) – зарядный и разрядный токи конденсатора 5(6); U_{c0} - начальное напряжение на конденсаторе в квазиустановившемся режиме работы инвертора на этапе заряда

$$U_{c0} = E \frac{1 + e^{-\pi / \sqrt{4Q_1^2 - 1}}}{e^{2\pi / \sqrt{4Q_2^2 - 1}} + e^{-\pi / \sqrt{4Q_1^2 - 1}}};$$
(3)

ω₁,ω₂ – собственные угловые частоты зарядного и разрядного контуров;

$$\omega_{1} = \sqrt{\frac{4Q_{1}^{2}-1}{4Q_{2}^{2}L_{1}C}}; \qquad \omega_{2} = \sqrt{\frac{4Q_{2}^{2}-1}{4Q_{2}^{2}L_{2}C}}; \tag{4}$$

 $Q = \rho_1 / r_1;$ $Q = \rho_2 / R_{\mu}$ – добротности зарядного и разрядного контуров; $\rho_1 = \sqrt{L_1 / C}, \ \rho_2 = \sqrt{L_2 / C}$ - волновые сопротивления зарядного и разрядного контуров; r_1 – активное сопротивление, учитывающее потери в зарядном контуре; k – коэффициент кратности напряжения U_{cm} на конденсаторе, показывающий во сколько раз оно превышает напряжения источника питания,

$$k = \frac{Ucm}{E} = \frac{1 + e^{-\pi/\sqrt{4Q_1^2 - 1}}}{1 + e^{-\pi\left[1/\sqrt{4Q_1^2 - 1} + 2/\sqrt{4Q_2^2 - 1}\right]}};$$
(5)

t – текущее время, отсчитываемое от момента включения тиристора 7 (8); t₁ – время, соответствующее моменту включения тиристора 9 (10).

Величина напряжения, до которого заряжаются конденсаторы, определяется добротностями зарядных и разрядных контуров, и в общем случае может составлять от Ud_{cp} до $2Ud_{cp}$ (Ud_{cp} - выходное напряжение управляемого выпрямителя 1), рис.26,в. Это дает возможность при определенной мощности применять выпрямитель с меньшим выходным напряжением, т.е. уменьшить его установленную мощность.

ЛИТЕРАТУРА

1. А.с. № 1385210 СССР. Инвертор./ А.И.Маркевич, А.А.Иванов, В.А.Иванов.// Открытия. Изобретения. 1988. №12.

А.И. Маркевич, А.А. Иванов. Анализ резонансного инвертора с промежуточными емкостными накопителями. // Электротехника, 1989. №12.

А.В. ИЛЬИН, И.В. ПЛОХОВ

МОДЕЛИРОВАНИЕ СОПРОТИВЛЕНИЯ СТЯГИВАНИЯ

Сопротивление стягивания

При контакте двух шероховатых тел общая поверхность соприкосновения распадается на множество отдельных пятен. В связи с этим при прохождении потока энергии через такую поверхность преодолевается дополнительное сопротивление, вносимое нарушением однородности линий потока, называемое сопротивлением стягивания.

Для вычисления сопротивления стягивания Хольмом [1] было предложено учитывать две компоненты, соответствующие стягиванию к группе пятен и стягиванию в пределах данной группы. Для тел с одинаковым удельным сопротивлением ρ , содержащих одну группу круглых, равномерно распределенных пятен получено выражение

$$R_C = R_1 + R_2 = \rho \cdot \left(\frac{1}{2 \cdot n \cdot a} + \frac{1}{2 \cdot a_k}\right),\tag{1}$$

где n – общее число пятен контакта, a – радиус пятна, a_k – радиус круга, внутри которого размещаются пятна контакта, R₁ и R₂ компоненты сопротивления, соответствующие стягиванию к пятнам и их группам.

Гринвудом [2] был уточнен второй член выражения

$$R_C = R_1 + R_2 = \rho \cdot \left(\frac{1}{2 \cdot n \cdot a} + \frac{16}{3 \cdot \pi^2 \cdot a_k}\right),\tag{2}$$

и показано, что его величина практически одинакова для любого расположения контактных пятен в группе. Позднее формула Гринвуда была расширена членами, которые учитывали асимметрию распределения групп пятен (кластеров) друг на друга, а также асимметрию распределения групп на номинальной площади.

Построение вычислительной модели

Для построения вычислительной модели сопротивления стягивания решено использовать метод конечных элементов. Контактирующую деталь удобно представить в виде трехмерной решетки, узлы которой связаны друг с другом чисто активными сопротивлениями некоторой величины R (Рис. 7, а). Размерность модели определяется количеством узлов решетки X, Y и Z по каждому измерению. В точках контакта узлы решетки связаны с внешней средой через сопротивление $\frac{R}{2}$ (Рис. 7, б). В точках отсутствия контакта связь с внешней средой отсутствует

(Рис. 7, в).

Рис. 7. Узлы решетки вычислительной модели.

По законам Кирхгофа сумму потенциалов для каждого узла решетки можно определить выражением

$$\varphi_{i-1,j,k} + \varphi_{i+1,j,k} + \varphi_{i,j-1,k} + \varphi_{i,j+1,k} + \varphi_{i,j,k-1} + \varphi_{i,j,k+1} - 6 \cdot \varphi_{i,j,k} = 0,$$
(3)

где $\varphi_{i,j,k}$ – потенциал узла с координатами i, j, k.

Для краевых узлов решетки в точках отсутствия контакта соответствующие потенциалы будут отсутствовать, а в точках наличия контакта сумма потенциалов будет равна удвоенному потенциалу внешней среды.

Записав данные уравнения для всех узлов решетки, получим систему линейных уравнений размерности $X \times Y \times Z$. Систему уравнений можно представить в матричной форме $A \times \Phi = B$ (4)

где A – матрица коэффициентов размерности $X \times Y \times Z$ на $X \times Y \times Z$, Φ – вектор потенциалов размерности $X \times Y \times Z$, B – вектор свободных членов размерности $X \times Y \times Z$.

На Рис. 8 представлен алгоритм заполнения матрицы А и вектора В. При построении алгоритма принято Φ_0 – вектор потенциалов контактного слоя, Φ_Z – вектор потенциалов

внешнего слоя, где $\varphi_i = \begin{cases} \geq 0, \text{есть контакт} \\ < 0, \text{нет контакта} \end{cases}$

Решение системы уравнений дает значения потенциалов для всех узлов решетки модели контактирующей детали.

Зная потенциалы всех узлов можно вычислить токи, протекающие через каждый узел

$$i_{i,j,k} = \frac{1}{2 \cdot R} \cdot \left(\frac{\left| \varphi_{i-1,j,k} - \varphi_{i,j,k} \right| + \left| \varphi_{i+1,j,k} - \varphi_{i,j,k} \right| + \left| \varphi_{i,j-1,k} - \varphi_{i,j,k} \right| + \left| \varphi_{i,j+1,k} - \varphi_{i,j,k} \right| + \left| \varphi_{i,j,k-1} - \varphi_{i,j,k-1} - \varphi_{i,j,k} \right| + \left| \varphi_{i,j,k-1}$$

В силу непрерывности тока вычислить протекающий через контакт ток можно по любому из слоев

$$I = \sum_{j=1}^{Y} \sum_{i=1}^{X} \frac{\varphi_{i,j,k} - \varphi_{i,j,k-1}}{R},$$
(6)

для $\forall k \in [2...Z].$

Используя закон Ома, вычисляем значение сопротивления между любым слоем модели и контактным слоем

$$R_M = \frac{\varphi_{i,j,k} - \varphi_{i,j,0}}{I},\tag{7}$$

где i, j – координаты некоторой точки, заданной для вычисления сопротивления, k = 1...Z + 1 – номер слоя, $\varphi_{i,j,0}$ – потенциал соответствующей точки контактного слоя, $\varphi_{i,j,Z+1}$ – потенциал точки внешнего слоя.

Чтобы получить сопротивление стягивания, нужно из полного сопротивления вычесть активное сопротивление материала контактной детали

$$R_C = R_M - R_A. ag{8}$$

Сопротивление материала для любого слоя k можно вычислить при помощи выражения

$$R_{A} = R \cdot \frac{\left(k - 0.5\right) \cdot \left|\varphi_{i,j,Z+1} - \varphi_{i,j,0}\right|}{X \cdot Y}.$$
(9)

Для приведения параметров вычислительной модели к реальному объекту необходимо выразить зависимость сопротивления R модели через ρ (удельное электрическое сопротивление) и линейные размеры узла решетки, либо производить вычисления в относительных единицах, приняв R = 1, а результаты экспериментов моделирования приводить к реальным значениям при помощи некоторого коэффициента, полученного эмпирическим путем.

248 Электротехника

Рис. 8. Алгоритм построения матрицы A и вектора B. *Реализация вычислительной модели*

Как видно из построения вычислительной модели основная проблема при ее реализации – это размерность системы линейных уравнений и в частности матрицы A. Уже при размерах модели $10 \times 10 \times 10$ мы получаем матрицу размерностью 1000×1000 . При использовании чисел удвоенной точности такая матрица будет занимать в памяти компьютера ~8 Мбайт. В тоже время матрица A, в зависимости от конфигурации контакта, заполнена приблизительно на 5%, остальные элементы являются нулевыми. Такие матрицы называются *разреженными* и для их обработки можно использовать специальные операции, позволяющие сократить объем занимаемой памяти и увеличить скорость вычислений. Широкий набор функций работы с разреженными матрицами заложен в системе инженерных и научных расчетов MATLAB [5].

Для организации удобного ввода исходных данных была создана специальная программа при помощи среды разработки приложений Delphi (

Рис. 9). На эту программу возлагаются следующие функции:

- задания параметров моделирования (размер модели по каждому измерению);
- задание конфигурации контактного слоя;
- построение матрицы A и вектора B;
- запуск системы инженерных расчетов МАТLАВ и передача в нее исходных данных;

- запуск сценариев MATLAB для выполнения необходимых расчетов и вывода результатов в виде графиков;
- сохранение созданной модели и результатов моделирования для повторного использования.

Сопротивление стягивания											
Создать Открыть			(📴 🕞 Сохранить Закрыть			с Закр) ыпь	💡 💡 Есть контакт Нет контакта) Расчет	? 📔 О программе Выход
1 2 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 -				7	8	9		11			Слой 1 Показать потенциал Показать ток i 6 2 i 6 2 Показать R I = 2.15 Rg = 1.41 Df = 1.27 Rc = 0.40

Рис. 9. Внешний вид главного окна программы.

Расчет модели размерностью 20×20×20 на компьютере с процессором AMD Duron 700 МГц занимает в пределах одной минуты.

Результаты моделирования

Результаты моделирования выводятся в графическом виде при помощи стандартных средств системы MATLAB. В текущей версии программы возможен анализ следующих данных:

- распределение потенциала по узлам любого слоя модели (Рис. 10);
- распределение токов, протекающих через узлы любого слоя модели (Рис. 11);
- зависимости расчетных сопротивлений по слоям и сопротивления стягивания, рассчитанные по теоретическим формулам (1-2), для сравнения (Рис. 12).

Рис. 11. Распределение токов через узлы.

Рис. 12. Графики сопротивлений.

На графиках сопротивлений (Рис. 12) приняты следующие обозначения:

- Rm сопротивление модели по слоям,
- Rmf сопротивление материала по слоям,
- Rc.m сопротивление стягивания по модели,
- Rc.h сопротивление стягивания по Хольму,
- Rc.gr сопротивление стягивания по Гринвуду.

Заключение

Как видно из графиков, полученных для одной точки контактирования, значения теоретических и расчетного сопротивлений стягивания незначительно отличаются друг от друга, что свидетельствует о достаточной адекватности построенной модели. В дальнейшем планируется провести серию вычислительных экспериментов с различными параметрами модели и конфигурациями контактов с целью дальнейшего совершенствования модели. Так же необходимо создание экспериментальной установки для практического подтверждения полученных результатов.

ЛИТЕРАТУРА

- 1. Хольм Р. Электрические контакты. М.: Иностранная литература. 1961.
- 2. Greenwood J. A. Constriction resistance and the real area of contact. British Journal of appl. Physics. 1966. V.17.P.1621-1631.
- 3. Потемкин В. Г. Система инженерных и научных расчетов МАТLAB 5.х: В 2-х томах М.: ДИАЛОГ-МИФИ, 1999 366 с.